
A Semantic Web Enabled Approach for Dependency Management
Ellis E. Eghan (e_eghan@encs.concordia.ca), Sultan S. Alqahtani (s_alqaht@encs.concordia.ca), Juergen Rilling (juergen.rilling@concordia.ca)

Concordia University, Canada

• Alqahtani, S. S., Eghan, E. E., & Rilling, J. (2016). Recovering Semantic Traceability Links between APIs and Security Vulnerabilities: An Ontological Modeling Approach. In 10th IEEE International Conference on Software Testing, Verification and Validation (ICST).
• Alqahtani, S. S., Eghan, E. E., & Rilling, J. (2016). SV-AF — A Security Vulnerability Analysis Framework. In 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE) (pp. 219–229). IEEE. http://doi.org/10.1109/ISSRE.2016.12
• Alqahtani, S. S., Eghan, E. E., & Rilling, J. (2016). “Tracing Known Security Vulnerabilities in Software Repositories – A Semantic Web Enabled Modeling Approach.” Science of Computer Programming, February. doi:10.1016/j.scico.2016.01.005.

APPLICATIONS/SERVICESAPPROACH

Current build tools provide support for automatic dependency management and
analysis at the individual project level – using only project-specific
dependencies.
In our approach, we extend this dependency analysis:
 to cross-projects dependencies – by creating a “global” dependency graph.
 integrating this graph with facts from other software knowledge sources to

provide bi-directional traceability.
 support for novel applications, such as detecting license violations and to

perform security vulnerability analysis within and across project boundaries.

MOTIVATION

Overview of methodology

• 0.062% of all Maven projects contain known security vulnerabilities.
• 48.8% of the identified vulnerable project releases suffer from multiple security vulnerabilities (e.g.

PostgreSQL 7.4.1 contains 25 known vulnerabilities)

INTERESTING RESULTS

FUTURE WORK

Modeling
Build

Semantics

Modeling
Build

Semantics

Before:
Heterogenous build

semantics

After:
Layered abstraction of

build ontologies

Why?
Unified formal

representation for
build semantics

Approach
Semantic Web

Ontology

Knowledge
Integration
Knowledge
Integration

Before:

Heterogeneous
knowledge sources

After:

Semantically
integrated information

hub

Why?

Easier discovery of
new knowledge and

facts

Approach

Ontology Alignment

ServicesServices
Before:

Unintegrated services
and results

After:

Smarter, simpler and
reusable services and

results

Why?

Towards the
automation of

software engineering
tasks

Approach

Reasoning and
Inference

In our research, we introduce a novel approach that takes advantage of the
Semantic Web and its technology stack (e.g., ontologies, Linked Data,
reasoning services) to establish a unified knowledge representation of
build semantics. We further automatically integrate the build model with
other knowledge models to eliminate existing information silos and
support new types of dependency analysis at a global scale.

Layered Abstraction of a subset of Integrated Ontologies

Dataset Facts

Maven NVD Licenses

178,763 Projects
1,849,756 Releases
5,143 Organizations

66,777,338 direct dependencies
410,943 releases with Licenses

82,415 Vulnerabilities
29,354 Affected Projects
186,212 Affected Releases
16,017 Patched vulnerabilities

346,553 Apache-2.0 releases
25,511 MIT releases
7,971 LGPL-2.1 releases
6,690 EPL-1.0 releases
6,272 GPL-3.0 releases
6,069 BSD-3-Clause releases

As transitivity levels increase, the number of
potentially affected dependent projects increase
drastically.

• Identification of potential failures due to breaking changes in
dependencies

• Impact analysis with build configuration

Services supported by our integrated knowledge model include:
• Vulnerability impact analysis
• License violation analysis
• Identification of potential failures due to breaking changes in

dependencies
• Assessing overall quality of build dependencies

Top Indirect License Violations in Maven

EPL-1.0 -> Apache-2.0 -> GPL-3.0 3784

GPL-3.0 -> LGPL-2.1 -> GPL-2.0 176

Vulnerability Impact Analysis

License Violation Analysis

Top Direct License Violations in Maven

Apache-2.0 -> GPL-2.0 2964

EPL-1.0 -> GPL-3.0 737

Depends On Depends On Depends On

License A License B License A License B License C
compatible compatible

incompatibleincompatible

Illustrative example of an integrated knowledge graph

