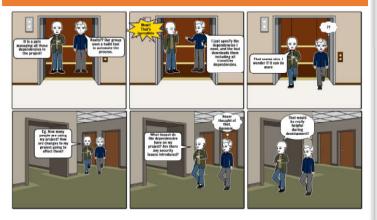
A Semantic Web Enabled Approach for Dependency Management

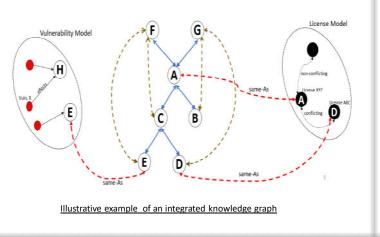
Ellis E. Eghan (e eghan@encs.concordia.ca), Sultan S. Alqahtani (s alqaht@encs.concordia.ca), Juergen Rilling (juergen.rilling@concordia.ca)



MOTIVATION

NSERC

CRSNG


People. Discovery. Innovation.

Current build tools provide support for automatic dependency management and analysis at the individual project level - using only project-specific dependencies.

In our approach, we extend this dependency analysis:

- > to **cross-projects dependencies** by creating a "global" dependency graph.
- > integrating this graph with facts from other software knowledge sources to provide bi-directional traceability.
- > support for **novel applications**, such as detecting license violations and to perform security vulnerability analysis within and across project boundaries.

Concordia University, Canada

Concordia

In our research, we introduce a novel approach that takes advantage of the Semantic Web and its technology stack (e.g., ontologies, Linked Data, reasoning services) to establish a unified knowledge representation of build semantics. We further automatically integrate the build model with other knowledge models to eliminate existing information silos and support new types of dependency analysis at a global scale.


APPROACH

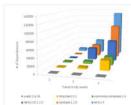
Overview of methodology

Dataset Facts

Maven	NVD	<u>Licenses</u>
178,763 Projects	82,415 Vulnerabilities	346,553 Apache-2.0 releases
1,849,756 Releases	29,354 Affected Projects	25,511 MIT releases
5,143 Organizations	186,212 Affected Releases	7,971 LGPL-2.1 releases
	16,017 Patched vulnerabilities	6,690 EPL-1.0 releases
66,777,338 direct dependencies		6,272 GPL-3.0 releases
410,943 releases with Licenses		6,069 BSD-3-Clause releases

APPLICATIONS/SERVICES

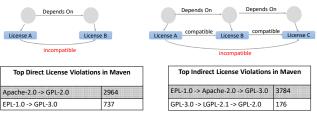
Services supported by our integrated knowledge model include:


- Vulnerability impact analysis
- License violation analysis
- · Identification of potential failures due to breaking changes in dependencies
- · Assessing overall quality of build dependencies

INTERESTING RESULTS

Vulnerability Impact Analysis

select ?secontProject ?mvnProject ?vulnerability where{


- #identify the individuals from MAVON that have owl:sameAs property with SECONT individuals. ?secontProject owl:sameAs ?mvnProject.
- #identify all the CVE-IDs for all the vulnerable projects that satisfied the property "owl:sameAs' ?mvnProject secont:hasVulnerability ?vulnerability.
- 0.062% of all Maven projects contain known security vulnerabilities.
- 48.8% of the identified vulnerable project releases suffer from multiple security vulnerabilities (e.g PostgreSQL 7.4.1 contains 25 known vulnerabilities)

As transitivity levels increase, the number of potentially affected dependent projects increase drastically

License Violation Analysis

License A

FUTURE WORK

- Identification of potential failures due to breaking changes in dependencies
- · Impact analysis with build configuration

Algahtani, S. S., Eghan, E, E., & Rilling, J. (2016), Recovering Semantic Traceability Links between APIs and Security Vulnerabilities: An Ontological Modeling Approach, In 10th IEEE International Conference on Software Testina, Verification and Validation (ICST).

Alqahtani, S. S., Eghan, E. E., & Rilling, J. (2016). SV-AF — A Security Vulnerability Analysis Framework. In 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE) (pp. 219–229). IEEE. http://doi.org/10.1109/ISSRE.2016.12

Alqahtani, S. S., Eghan, E. E., & Rilling, J. (2016). "Tracing Known Security Vulnerabilities in Software Repositories – A Semantic Web Enabled Modeling Approach." Science of Computer Programming, February. doi:10.1016/j.scico.2016.01.005